SYNTHESIS AND CONFORMATIONS OF 2,3:4,5- AND 2,4:3,5-DI-O-ISOPROPYLIDENE-D-MANNITOL

KRYSTYNA GAWRONSKA

Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznan (Poland) (Received June 17th, 1987; accepted for publication, October 10th, 1987)

ABSTRACT

The 2,3:4,5- (8) and 2,4:3,5-di-O-isopropylidene (10) derivatives of D-mannitol have been prepared from 1,6-di-O-benzoyl-D-mannitol and their structures established by ¹³C-n.m.r. spectroscopy. The 1,3-dioxane rings in 10 adopt a skew conformation and the sugar carbon chain in 8 is bent around the C-3-C-4 bond, as found by i.r. data and molecular mechanics calculations. Oxidation of 8 with pyridinium dichromate gave 2,3:4,5-di-O-isopropylidene-D-mannono-1,6-lactone (12).

INTRODUCTION

Selective protection of the hydroxyl groups in D-mannitol by acetalation has received much attention¹. Thus, acid-catalysed isopropylidenation² with acetone–zinc chloride³⁻⁵, acetone-2,2-dimethoxypropane⁶, 2,2-dimethoxypropane in methyl sulfoxide⁷, or 2-methoxypropene in 1,2-dimethoxyethane⁸ or in *N*,*N*-dimethylformamide⁹ yields the 1,2:5,6-di-*O*-isopropylidene derivative 2. With a limited amount of 2-methoxypropene, the 1,2-*O*-isopropylidene derivative 3 can be obtained⁹ and more-forcing conditions provide the 1,2:3,4:5,6-tri-*O*-isopropylidene derivative 4^{2,10}. Selective hydrolysis of 4 gave 1,2:3,4-di-*O*- (5)¹¹ and 3,4-*O*-isopropylidene (6)¹²⁻¹⁵ derivatives.

2,3:4,5-Di-O-isopropylidene-D-mannitol (8) is of special interest since, owing to the unique conformation (see below), its derivatives should be amenable to 1,6-ring closure. Both 8¹⁶ and its L enantiomer¹⁷ have been prepared from D- and L-inositol, and we now report the preparation of 8 from the cheap starting-material D-mannitol. Although this involves the formation of isopropylidene derivatives from erythro-diols, such reactions have been reported for D-mannitol² and D-ribose diethyl dithioacetal¹⁸. However, for 1,6-disubstituted derivatives of D-mannitol, 2,3:4,5-, 2,4:3,5-, and 2,5:3,4-diacetals are possible products. Acetalation of 1,6-dichloro-1,6-dideoxy-D-mannitol with trifluoroacetone and sulfuric acid was claimed to give two diastereoisomeric 2,3:4,5-di-O-trifluoroisopropylidene derivatives, but the structures were not proved¹⁹.

RESULTS AND DISCUSSION

Treatment of 1,6-di-O-benzoyl-D-mannitol²⁰ (1) with an excess of 2,2-dimethoxypropane and a trace of toluene-p-sulfonic acid gave 72% of an inseparable mixture of the diacetals 9 and 11 and the 3,4-acetal 7 (17%), which was isolated easily by column chromatography. Compound 7 was the main product of acetalation of 1 with acetone-toluene-p-sulfonic acid and its spectral characteristics were in accord with those published^{14,21,22}.

The presence of the two diacetals **9** and **11** in the above mixture was established by the 13 C-n.m.r. data (Table I), namely, two sets of signals for the CMe_2 groups and the carbons of the sugar chain. In addition, only two signals for CMe_2 were seen in the 100–110 p.p.m. range, namely, at 109.6 and 101.2 p.p.m. characteristic of a dioxolane ring and a dioxane or a dioxepane ring²³, respectively. A 2,5:3,4-diacetal structure was ruled out, since pure **11**, prepared by benzoylation of **10** (see below), shows no signal for CMe_2 in the range 109–110 p.p.m. and, hence, contained no dioxolane ring. The methyl groups in **9** and **11** are diastereotopic; since the molecules each possess a C_2 axis of symmetry, the acetal rings are equivalent and only two 1 H- and 13 C-n.m.r. signals are expected and observed for each compound. In addition, the small (2.0 p.p.m.) $\Delta\delta$ value for the 13 C resonances of the gem-dimethyl carbons in **9** is characteristic of the dioxolane ring²³. Thus, the 2,3:4,5- (**9**) and 2,4:3,5-diacetal (**11**) structures comply with the n.m.r. data. Integration of the 13 C resonances of the methyl groups gave the ratio of **9** and **11** as 2:1.

Bz 0
$$\xrightarrow{H0}$$
 \xrightarrow{OH} \xrightarrow{OH}

TABLE I

13C-N.M.R. DATA OF THE ISOPROPYLIDENE DERIVATIVES 7–12

Compound	CMe ₂	Sugar chain carbons	CMe ₂	Δδ <i>C</i> Me ₂
7	110.0	67.0 71.8	26.0	0
		80.0		
8	109.0	61.5	25.5 27.4	1.9
		74.7 77.5		
94	109.6	64.2	25.4 27.4	2.0
		74.7		
		75.1		
10	100.9	62.9	23.8 24.8	1.0
		67.7		
		70.3		
11	101.2	64.7	23.7 24.5	0.8
		68.2		
		68.6		
12	.111.0	65.3		≤3.3
		73.6	23.1	
		74.4	25.5	
		75.8	25.8	
		76.3	26.4	
		167.5		

^aObtained from a mixture of 9 and 11.

The small (0.8 and 1.0 p.p.m., respectively) $\Delta\delta$ values for the ¹³C resonances of the gem-dimethyl carbons of the 1,3-dioxane rings in **11** and **10** indicate non-chair conformations, since a chair conformation requires a $\Delta\delta$ value of ~10 p.p.m.²³. Thus, a skew conformation (**15**) of the dioxane rings in **10** and **11** is preferred since 1,3-diaxial interactions are avoided thereby.

82 K. GAWRONSKA

Treatment of the mixture of dibenzoates 9 and 11 with sodium methoxide in methanol-chloroform followed by chromatography afforded the diacetals 8 (m.p. 93-95°) and 10 (m.p. 134-136°). The 13 C-n.m.r. data (Table I) for 8 and 10 corresponded closely to those for 9 and 11. Their 1 H-n.m.r. spectra each contained two singlets for the methyl groups, in accord with the symmetry considerations noted above. The mass spectra of 8 and 10 each contained a characteristic peak at m/z 131 (relative intensities, 38% and 56%, respectively) due to the fragmentation of the molecules about the C-3-C-4 bond. There was no peak at m/z 101 due to a terminal dioxolane ring.

The i.r. spectra of 10^{-3} M solutions of **8** and **10** in CCl₄ differed considerably (Fig. 1). Whereas that for **10** contains a single band at 3602 cm^{-1} , typical of an intramolecular hydrogen bond in a five-membered ring*, that of **8** contains a weak band at 3638 cm^{-1} , due to the free primary hydroxyl group; a stronger band at 3603 cm^{-1} ($\Delta \nu$ 35), characteristic of an intramolecular hydrogen bond in a five-membered ring; and a much stronger band at 3532 cm^{-1} ($\Delta \nu$ 106), due to a shorter hydrogen bond²⁴. The band at 3532 cm^{-1} could reflect the formation of a hydrogen bond between the two CH₂OH groups, since the dioxolane rings force the molecule into a bent conformation and bring the two terminal hydroxyl groups into close proximity.

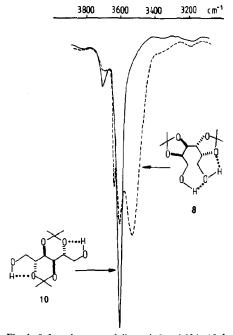


Fig. 1. Infrared spectra of diacetals 8 and 10 in 10-3M CCl₄.

^{*}Alternative hydrogen bonding to give a six-membered ring apparently is disfavoured due to the C-O/C-O dipole interaction.

The structural parameters for the preferred conformation of **8** were found by force field calculations, using the MM2 method²⁵. The molecule **8** can adopt two conformations (**13** and **14**) of similar energy. In each conformation, the substituents around the C-3–C-4 bond are staggered and the two dioxolane rings have the $^{3.4}E$ conformations. The calculated steric energy (hydrogen bonding not included) for **8** in the conformation **13** with the C-2–C-3 and C-4–C-5 bonds synclinal (dihedral angle, $+65^{\circ}$) is lower by 0.3 kcal mol⁻¹ than that of the molecule in the conformation **14** in which the above bonds are antiperiplanar (dihedral angle, $+171^{\circ}$). The calculated dihedral angles for the preferred conformation are shown in formula **13**.

The conformation of the diol 8 affects its reactivity. Whereas oxidation of 10 with pyridinium dichromate gives a complex mixtures of products, 8 is smoothly converted into the lactone 12, presumably *via* rapid formation of the hemiacetal of the intermediate aldehyde. The structure of the lactone 12 was confirmed by the spectral data. The compound had a strong i.r. carbonyl stretching band at 1745 cm⁻¹ and no absorption for hydroxyl. There were four signals for methyl groups in both the ¹H- and ¹³C-n.m.r. spectra. The presence of the two non-equivalent dioxolane rings was also confirmed by the ¹³C-n.m.r. spectrum (Table I).

EXPERIMENTAL

General. — T.l.c. was performed on Silica Gel GF₂₅₄ (Merck) with dichloromethane-methanol (99:1) and detection by charring with sulfuric acid. Silica gel 100–200 mesh (P.O.Ch., Gliwice) was used for column chromatography. Melting points are uncorrected. Specific rotations were measured with a Polamat polarimeter. I.r. spectra were recorded with a Perkin-Ehmer 580 grating spectrophotometer. N.m.r. spectra were recorded with a JEOL FX 90-MHz spectrometer for solutions in CDCl₃ (internal Me₄Si). C.d. spectra were recorded with a Jobin-Yvon Mark III dichrograph, u.v. spectra with a Cary 118C spectrophotometer, and mass spectra with a JEOL JMS-D 100 spectrometer.

1,6-Di-O-benzoyl-2,3:4,5-di-O-isopropylidene-D-mannitol (9) and 1,6-di-O-benzoyl-2,4:3,5-di-O-isopropylidene-D-mannitol (11). — A mixture of 1,6-di-O-benzoyl-D-mannitol (1, 4.8 g), 2,2-dimethoxypropane (30 mL), and toluene-p-sulfonic acid hydrate (50 mg) was heated for 1 h at 80°, then cooled, and extracted with ether-aqueous Na₂CO₃. Concentration of the ether solution yielded a colorless oil which was subjected to short-column chromatography (dichloromethane) to afford a mixture (4.2 g, 72%) of 9 and 11 as a colorless oil; $\nu_{\rm max}^{\rm film}$ 1720, 1272, 1108, and 707 cm⁻¹; $\lambda_{\rm max}^{\rm dioxane}$ 229 nm (ε 24,900). ¹H-N.m.r. data: δ 1.32, 1.37, 1.43, and 1.54 (4 s, 12 H, 2 CMe₂), 4.0-4.6 (m, 8 H), 7.3-7.6 (m, 6 H), 8.0-8.1 (m, 4 H).

Further elution with dichloromethane—ether (9:1) gave 1,6-di-O-benzoyl-3,4-O-isopropylidene-D-mannitol (7; 0.85 g, 17%), m.p. 94–95° (from ether–hexane), $[\alpha]_D^{20}$ +22.5° (c 2.5, chloroform); lit. ¹⁴ m.p. 94°, $[\alpha]_D^{23}$ +25° (pyridine).

2,3:4,5-Di-O-isopropylidene-D-mannitol (8) and 2,4:3,5-di-O-isopropylidene-D-mannitol (10). — A solution of the foregoing mixture (4.2 g) of 9 and 11 in

84 K. GAWRONSKA

chloroform (100 mL) and methanol (10 mL) was stirred overnight at room temperature with methanolic M MeONa (1 mL), and then concentrated. The residue was washed with light petroleum, and then a solution in dichloromethane was subjected to short-column chromatography. Elution with dichloromethane gave 10 which, after crystallisation from acetone-hexane, gave a product (0.63 g, 27%) having m.p. 134–136°, $[\alpha]_D^{20}$ +22° (c 2.5, chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 3300, 1215, and 1025 cm⁻¹. ¹H-N.m.r. data: δ 1.33 and 1.40 (2 s, 12 H, 2 CMe₂), 2.1 (bs, 2 H, 2 OH), and 3.7–4.0 (m, 8 H). Mass spectrum: m/z 247 (8%), 144 (8), 131 (56), 113 (15), 86 (9), 68 (11), and 59 (100).

Anal. Calc. for $C_{12}H_{22}O_6$: C, 54.95; H, 8.45. Found: C, 55.01; H, 8.72.

Further elution with dichloromethane—ether (9:1) gave **8** which, after crystallisation from ether–hexane, gave a product (1.33 g, 57%) having m.p. 93–95°, $[\alpha]_D^{20}$ +15° (c 2.8, chloroform); lit. ¹⁶ m.p. 90–92°, $[\alpha]_D$ +13.4° (chloroform); $\nu_{\text{max}}^{\text{KBr}}$ 3470, 3410, 1212, and 1045 cm⁻¹. ¹H-N.m.r. data: δ 1.39 and 1.51 (2 s, 12 H, 2 CMe₂), 3.3 (bs, 2 H, OH), 3.73 (bs, 4 H, 2 CH₂), and 4.31 (s, 4 H, 4 CH). Mass spectrum: m/z 247 (27%), 173 (17), 131 (38), 129 (11), 115 (10), 111 (7), 99 (12), 85 (18), 73 (11), 71 (12), 69 (9), and 59 (100).

Anal. Calc. for C₁₂H₂₂O₆: C, 54.95; H, 8.45. Found: C, 54.96; H, 8.41.

2,3:4,5-Di-O-isopropylidene-D-mannono-1,6-lactone (12). — The diacetal 8 (262 mg, 1 mmol) was stirred with pyridinium dichromate (1.13 g, 3 mmol) in dichloromethane (6 mL) for 6 h at room temperature. The mixture was diluted with ether, filtered, and concentrated. Column chromatography (hexane-dichloromethane, 1:1) of the residue and distillation at 130°/10 Pa gave 12 as a colorless syrup (191 mg, 74%), $[\alpha]_D^{25}$ -49.5° (c 1.3, chloroform); $\nu_{\text{max}}^{\text{film}}$ 1745 cm⁻¹ (lactone); c.d. (MeCN): $\Delta \varepsilon$ -0.23 (246), +0.7 (220). ¹H-N.m.r. data: δ 1.39, 1.41, 1.54, and 1.60 (4 s, 12 H, 2 CMe₂), 4.1-5.1 (m, 6 H).

Anal. Calc. for C₁₂H₁₈O₆: C, 55.81; H, 7.02. Found: C, 55.51; H, 7.23.

ACKNOWLEDGMENTS

We thank Dr. J. Koput for the MM2 calculations. This research was supported by the Programme RP II.13.2.10.

REFERENCES

- 1 D. M. CLODE, Chem. Rev., 79 (1979) 491-512.
- J. Kuszmann and E. Tomori, Carbohydr. Res., 137 (1985) 276–281; J. Kuszmann, E. Tomori, and I. Meerwald, ibid., 128 (1984) 87–99.
- 3 E. BAYER, J. Am. Chem. Soc., 67 (1945) 338-339.
- 4 U. SCHMIDT, J. TALBIERSKY, F. BARTKOWIAK, AND J. WILD, Angew. Chem., Int. Ed. Engl., 19 (1980) 198-199.
- 5 R. S. TIPSON AND A. COHEN, Carbohydr. Res., 7 (1968) 232-234.
- 6 G. KOHAN AND G. JUST, Synthesis, (1974) 192.
- 7 R. W. KIERSTEAD, A. FARAONE, F. MENNONA, J. MULLIN, R. W. GUTHRIE, H. CROWLEY, B. SIMKO, AND D. HORTON, *J. Med. Chem.*, 26 (1983) 1561–1569.
- 8 G. J. F. CHITTENDEN, Carbohydr. Res., 84 (1980) 350-352.

- 9 J. L. DEBOST, J. GELAS, AND D. HORTON, J. Org. Chem., 48 (1983) 1381-1382.
- 10 L. F. WIGGINS, J. Chem. Soc., (1946) 13-14.
- I. E. WALASHEK, T. M. FILIPPOVA, M. K. SHACHOVA, N. A. BOGOSLOVSKII, M. G. ROMANIUK, AND I. SAMOCHVALOV, Zh. Obshch. Khim., 54 (1984) 2775–2779.
- 12 H. O. L. FISCHER AND H. APPEL, Helv. Chim. Acta, 17 (1934) 1574-1582.
- 13 T. HORVATH AND L. VARGHA, Carbohydr. Res., 16 (1971) 253-259.
- 14 L. MERRER, A. DUREAULT, C. GRAVIER, D. LANGUIN, AND J. C. DEPEZAY, *Tetrahedron Lett.*, 26 (1985) 319–322.
- 15 P. Brigl and H. Grüner, Ber., 67 (1934) 1969-1973.
- 16 C. E. BALLOU AND H. O. L. FISCHER, J. Am. Chem. Soc., 75 (1953) 3673-3675.
- 17 S. J. ANGYAL, C. G. MACDONALD, AND N. K. MATHESON, J. Chem. Soc., (1953) 3321-3323.
- 18 G. ASLANI-SHOTORBANI, J. G. BUCHANAN, A. R. EDGAR, AND P. K. SHAHIDI, Carbohydr. Res., 136 (1985) 37–52.
- 19 G. M. ZARUBINSKII, B. Z. VOLCHEK, AND S. N. DANILOV, Zh. Obshch. Khim., 43 (1973) 2760-2762.
- 20 P. Brigl and H. Grüner, Ber., 65 (1932) 641-645.
- 21 J. Yoshimura, K. Hara, M. Yamaura, K. Mikami, and H. Hashimoto, *Bull. Chem. Soc. Jpn.*, 55 (1982) 933–937.
- 22 C. MORPAIN AND M. TISSERAND, J. Chem. Soc., Perkin Trans. 1, (1979) 1379-1383.
- 23 J. G. BUCHANAN, A. R. EDGAR, D. I. RAWSON, P. SHAHIDI, AND R. H. WIGHTMAN, Carbohydr. Res., 100 (1982) 75-86.
- 24 A. B. FOSTER, A. H. HAINES, AND M. STACEY, Tetrahedron, 16 (1961) 177-184; H. S. AARON, Top. Stereochem., 11 (1979) 1-52.
- 25 N. L. Allinger and Y. Y. Yuh, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana.